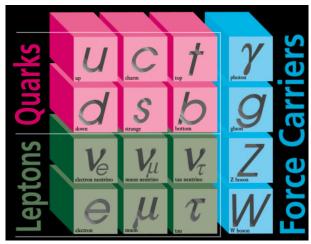
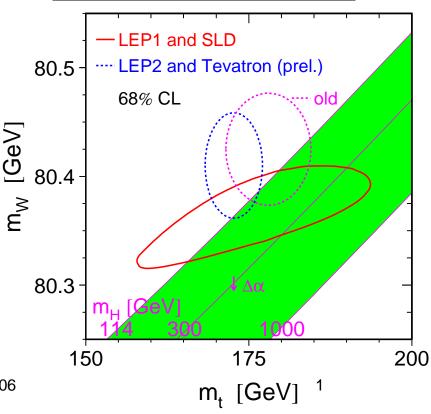


TOP PHYSICS AT CDF

Enrique Palencia

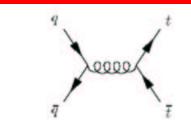
Instituto de Física de Cantabria

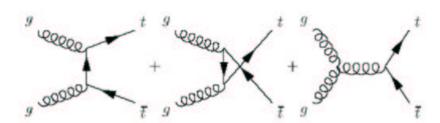

for the CDF Collaboration



Lake Louise Winter Institute, February 17-23, 2006

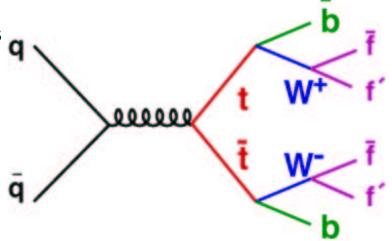
Why is Top Quark so interesting?


- Heaviest known fundamental particle \Rightarrow high p_T physics
- Decays before it can hadronize ($\tau_{top} \sim 10^{-24}$ sec) \Rightarrow momentum and spin pass to the decay products
- Look for new physics
- Top quark properties test SM
 - Higher x-sec than predicted could be a sign of non SM production mechanisms
- Top mass fundamental parameter in SM
 - M_t, along with the mass of the W, is related with the mass of the Higgs boson

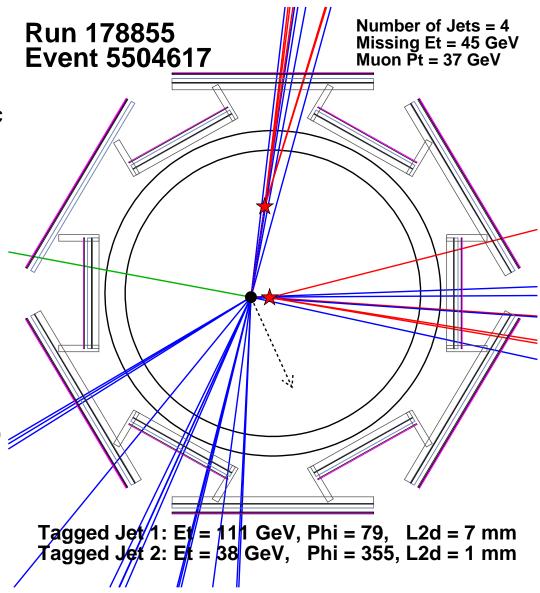


Top Production & Decay Modes

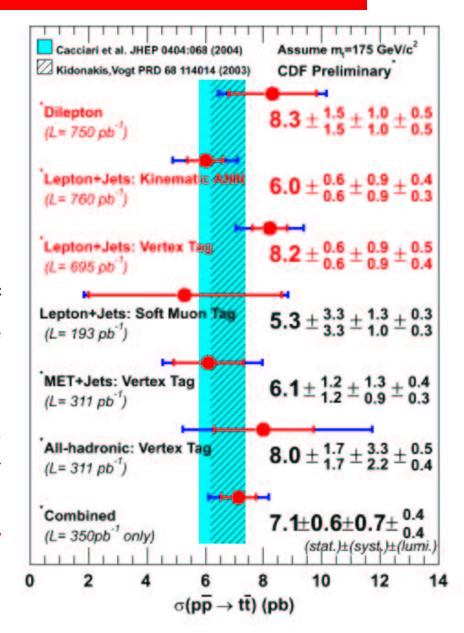
- At Tevatron energies ($\sqrt{s} = 1.96~TeV$) tops are mainly produced in pairs via strong interaction
 - \Diamond $q\bar{q}$ annihilation (85%) or gluon fusion (15%)
 - $\Diamond \ \sigma(p\bar{p} \to t\bar{t} @ M_t = 175 \ GeV) \approx 6.7 \ pb \Rightarrow \text{one}$ top event every 10 billion inelastic colisions



- Decays via electroweak interaction $t \to Wb$
 - \Diamond BR($t \to Wb$) \approx 1 \Rightarrow final state given by the W^{\pm} decays
 - \Diamond BR($W \rightarrow$ leptons) = 1/3, BR($W \rightarrow$ quarks) = 2/3

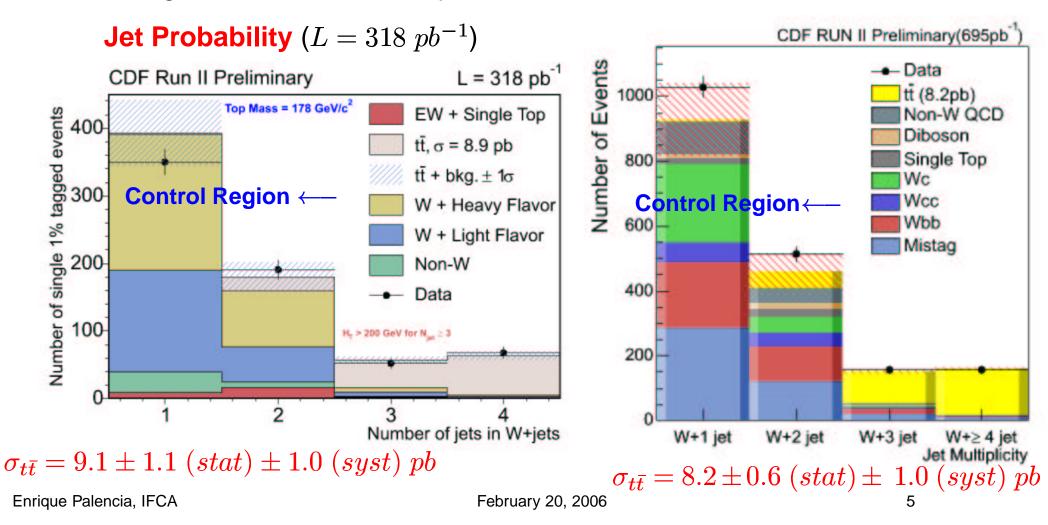

 $lepton \equiv electron or muon$

Final State	Dataset	BR
$l\nu\ l\nu\ bb$	dilepton	~5%
$l u \; qq \; bb$	lepton+jets	~30%
$qq\ qq\ bb$	hadronic	~44%

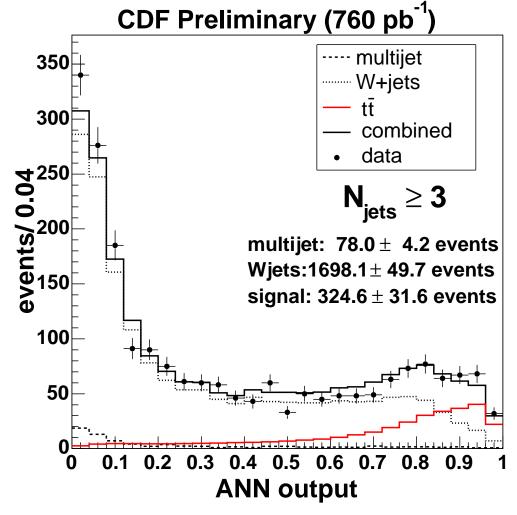

Detecting the Top Quark

- Top events:
 - are energetic, central and spherical
 - \diamondsuit have E_T from neutrinos in leptonic modes
 - \diamondsuit have jets with high E_T
 - \diamondsuit have two high E_T b-jets
- Main backgrounds:
 - \Diamond Dilepton: $Z \to l^- l^+$
 - \diamondsuit L+jets: W + jets (few % have b or c)
- b-tagging improves S/B (SecVtx, Jet Probability, Soft Lepton Tagger)
 - \diamondsuit Top event tag efficiency $\sim 55 60\%$
 - \Diamond Mistag rate $\sim 1\%$

Production Cross Section Measurements


- Counting experiment: $\sigma_{t\bar{t}} = \frac{N_{obs} N_{bkg}}{A \times \epsilon \times \int L dt}$
- Test non-SM top production mechanism
- Look for new physics in the top samples
- Goal: demonstrate good understanding of backgrounds in control region and observe excess from top in signal region
- Measurements in different final states are consistent with each other and with theory
- Most of the results I will show here are new

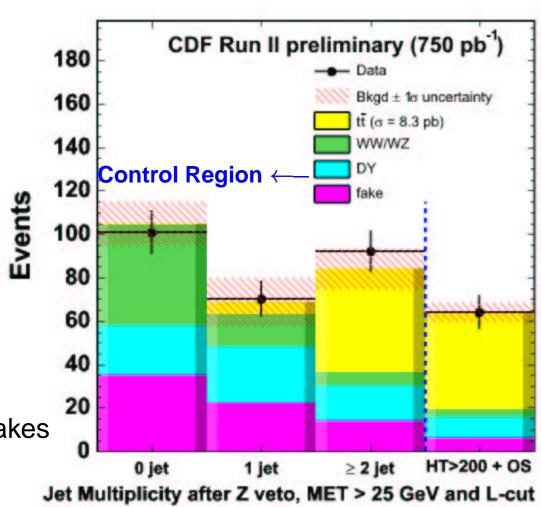
$\sigma_{t\bar{t}}$ in Lepton+Jets with b-tagging


- Selection: 1 isolated lepton (e, μ) with p_T > 20 GeV, E_T > 20 GeV, \geq 3 jets with E_T > 15 GeV, \geq 1 b-tagged jet
- Main backgrounds: $Wb\bar{b}$ / $Wc\bar{c}$ + jets, QCD, mistags

SecVtx $(L = 695 \ pb^{-1})$

$\sigma_{t\bar{t}}$ in L+Jets without b-tagging ($L=760~pb^{-1}$)

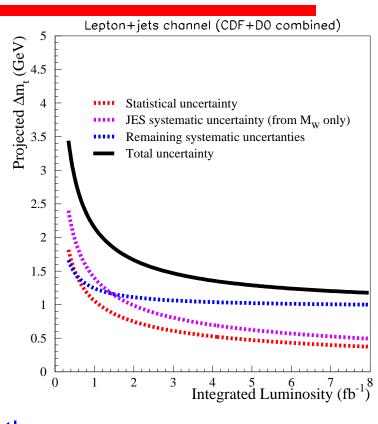
- Same selection criteria but no btagging is required ⇒ higher statistics but larger backgrounds also
- Different backgrounds systematics than in tag analysis
- Kinematical analysis using a Neural Network
- 325 $t\bar{t}$ events!!!!
- $\sigma_{t\bar{t}} = 6.0 \pm 0.6 \; (stat) \pm 0.9 \; (syst) \; pb$

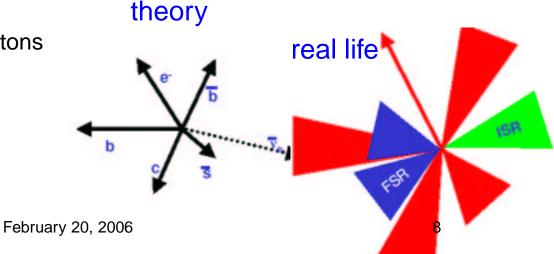

$\sigma_{t\bar{t}}$ in Dilepton ($L=750~pb^{-1}$)

Both W's decay to lepton and neutrino

 Very clean sample.. but low statistics

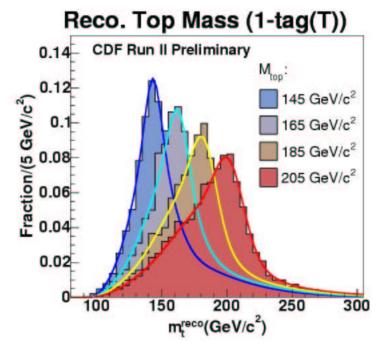
• Selection: 2 isolated lepton (e, μ) with p_T > 20 GeV, \geq 2 jets with E_T > 15 GeV, $\not\!E_T$ > 25 GeV

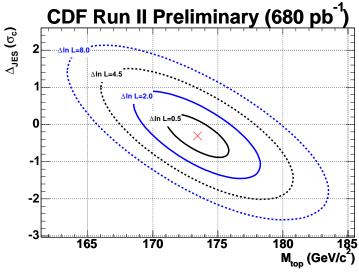

Main backgrounds: DY, dibosons, fakes



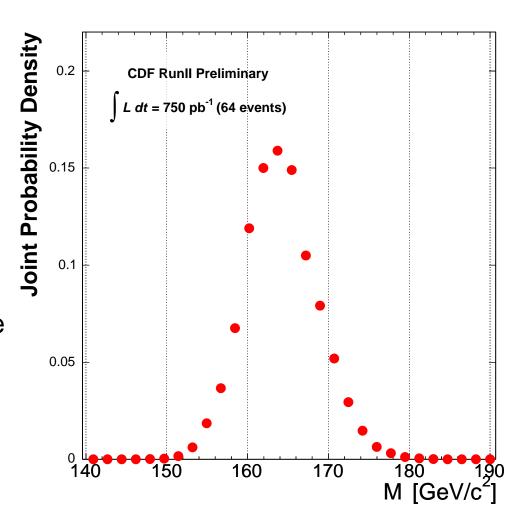
• $\sigma_{t\bar{t}} = 8.3 \pm 1.5 \; (stat) \pm 1.0 \; (syst) \pm 0.5 \; (lum) \; pb$

Top Quark Mass

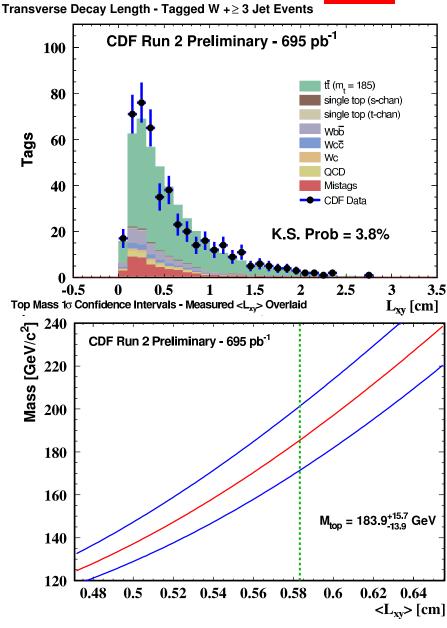

- Fundamental parameter of the SM
- Many different methods applied at CDF: trying to optimize the stat. and syst. performance
- ullet Design goal: $\delta M_t \sim$ 2-3 GeV
- Largest uncertainty: Jet Energy Scale measurement
- Very challenging measurement!
 - Undetected neutrino(s)
 - Many different ways to assign jets to partons
 - Small statistics
 - Large energy resolution for jets



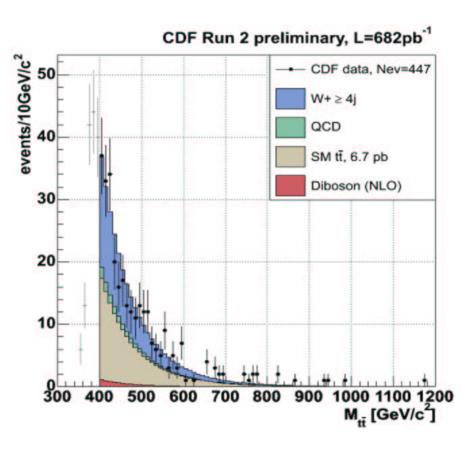
M_t with Templates in L+Jets ($L = 680 \ pb^{-1}$)

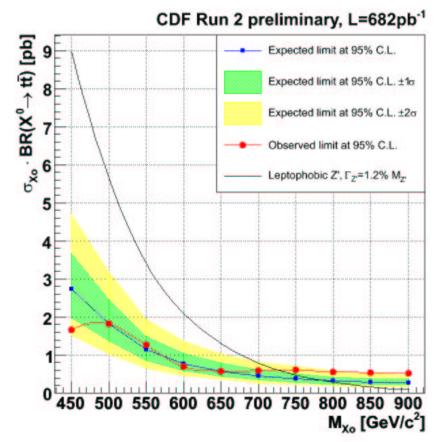

- Reconstruct event-by-event M_t
- ullet Create templates using events simulated with different M_t values
- \bullet Simultaneous fit to top mass and JES using $W \to jj$ decays
- $M_t = 173.4 \pm 2.5 \; (stat + JES) \pm 1.3 \; (syst) \; GeV$
- $\Delta_{JES} = -0.30^{+0.59}_{-0.58} \, \sigma_c$

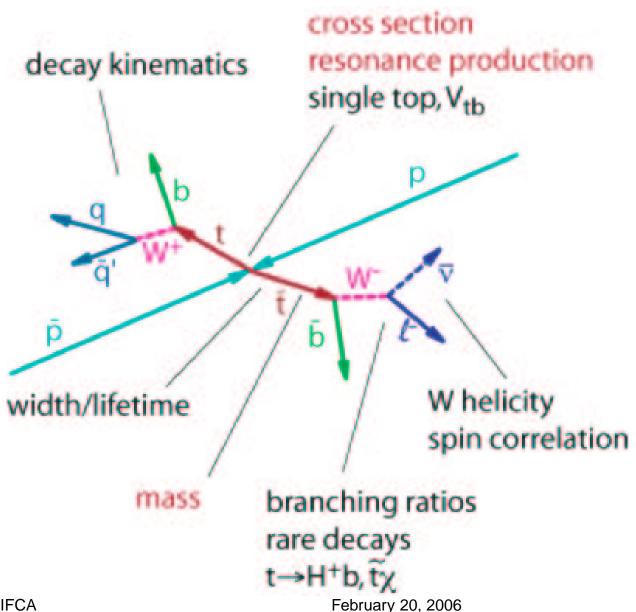
M_t with ME in Dilepton ($L = 750 \ pb^{-1}$)


- 2 neutrinos, small branching ratio...
- ... but fewer combinatorics
- Matrix element technique
- Use all available information about the event in the fit
- $M_t = 164.5 \pm 4.5 \; (stat) \pm 3.1 \; (syst) \; GeV$

February 20, 2006 10


Top Mass: a different approach... in L+Jets ($L=695\ pb^{-1}$)

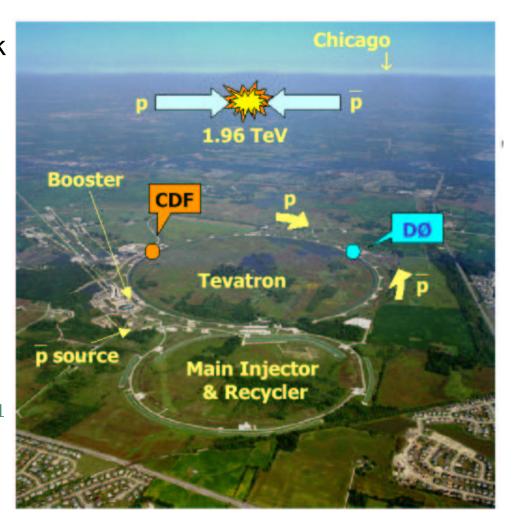

- No more full event reconstruction!
- Relies on tracking information (decay length of b's, L_{xy})
- $\langle L_{xy} \rangle = 0.5808 \pm 0.0227 \ cm$
- $M_t = 183.9^{+15.7}_{-13.9} (stat) \pm 5.6 (syst) GeV$
- Statistically limited @ Tevatron
- ... but does not depends on JES


Searches for $t\bar{t}$ resonances: $p\bar{p} \to X^0 \to t\bar{t}$ ($L=682~pb^{-1}$)

- Search for new massive resonance decaying to top pairs (predicted by some exotic models)
- $t\bar{t}$ invariant mass spectrum (M_{$t\bar{t}$}) for top candidates in the I+jets sample
- Test the consistency of the data with SM $tar{t}$ production

TOP PHYSICS IS HUGE!!!

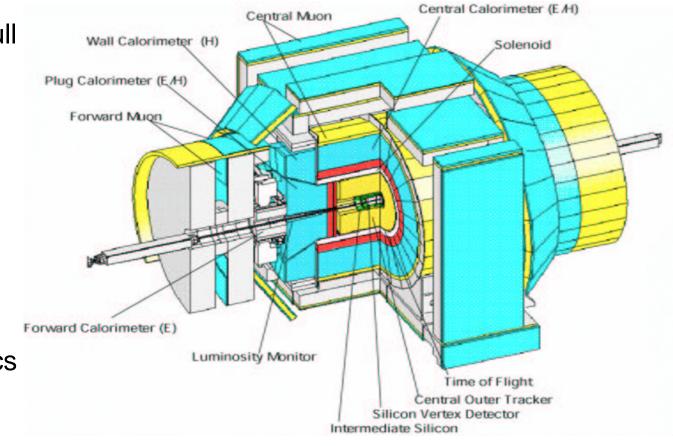
Enrique Palencia, IFCA 13

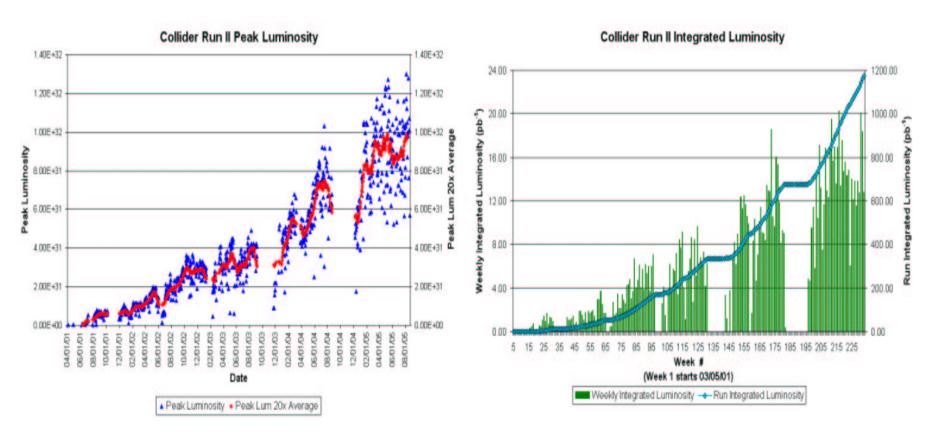

Conclusions

- Experimental top quark physics at CDF is in a mature state
 - ♦ A lot of people involved ⇒ great variety of analyses
 - No evidence of non-SM top quark... so far
 - But still many chances of discovery at CDF
- Shown results with $\sim 700~pb^{-1}$, data taken in Sept 05 have already been analysed
- Many top physics results at CDF have been published (18). And (even) more precise measurements are coming soon
 - \diamondsuit Expect to have many more results with $\sim 1 fb^{-1}$ of data for summer conferences
- Extremely rich top physics program at Tevatron

BACK-UP SLIDES

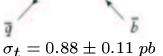
The Tevatron


- Currently, the world's only top quark production machine
- Highest energy $p\bar{p}$ collider
 - Energy of the beam = $980 \ GeV$
 - $-\sqrt{s}=1.96~TeV~({\rm Run~I} \rightarrow 1.8~TeV)$
- Collisions every 396~ns (Run I $3.5~\mu s$)
- Run I: 1992 1996 (¡quark top!)
- Run II: 2001 nowadays
 - Many improvements: Main Injector
 - \mathcal{L}_{int} : 100 pb^{-1} (Run I) $\longrightarrow > 1$ fb^{-1} (Run II)

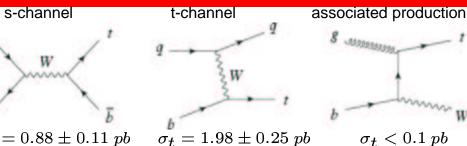

• Other discoveries: quark bottom (1977) y ν_{τ} (2000)

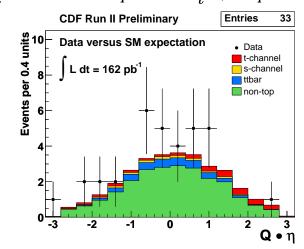
CDF

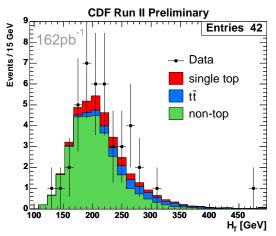
- General-purpose particle detector. Cylindrical simmetry
- ullet 3 subsystems: tracking (inside a $1.4\ T$ solenoidal magnetic field), calorimetry and muons systems
- For top physics, the full detector is needed
- Run II improvements:
 - New Silicon detector
 - TOF detector
 - plug calorimeters
 - $forward \mu$ detectors
 - DAQ & triggers electronics
 - L2 SVT trigger


Tevatron: Luminosity (Run II)

- $\mathcal{L}_{inst}^{max} \sim 1.8 \cdot 10^{32} \ cm^{-2} s^{-1}$, $\mathcal{L}_{int} \sim 1.5 \ fb^{-1}$ ($\sim 1.2 \ fb^{-1}$ on tape)
- $\mathcal{L}_{int} \sim 4.4$ (main goal)- 8.5 (design) fb^{-1} in 2009?

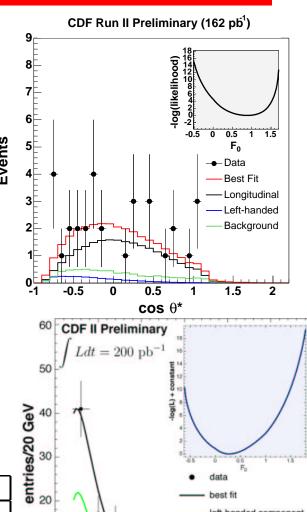

Single Top Quark Production


- It is possible via EW processes
 - Cross section ∞ matrix element $|V_{tb}|^2$ (direct measurement)



- Production channel sensitive to new physics
- Not yet observed at CDF. Set upper limits
- Final state: lepton, E_T , 2 jets (at least 1 b-jet)
- Two different analysis ($L = 162 \ pb^{-1}$)
 - Separate search channels (reveal new physics, $Q \times \eta$ distribution)
 - Combined search (H_T distribution)

Measurement	$\sigma_t \ @ \ 95\% \ CL \ (pb)$	$\int Ldt$
s-channel	<13.6	162
t-channel	<10.1	162
combined	<17.8	162



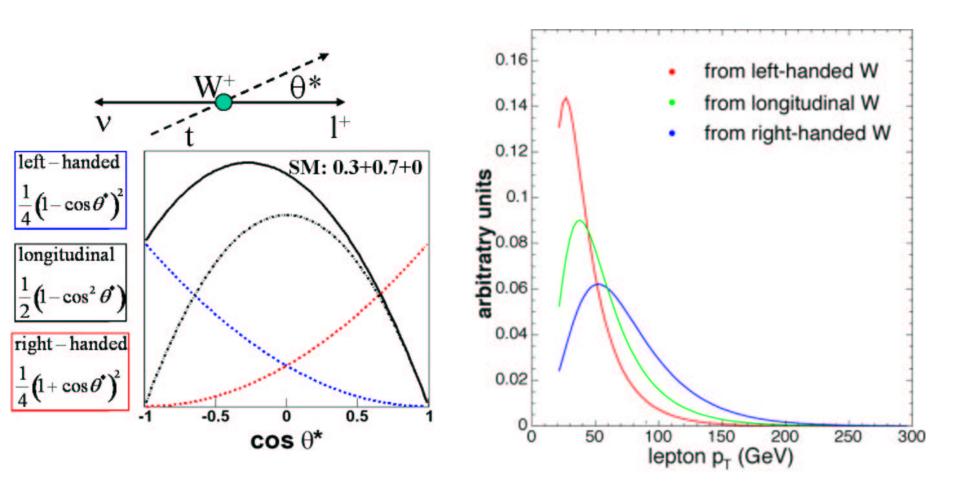
W Helicity from Top Decay

- W boson has three helicity states
 - Left handed, longitudinal, right handed
 - Top quark decays mostly to longitudinal W's
- Measuring the fraction of longitudinal W's (F_0) :
 - \diamondsuit we test a SM prediction: $F_0 = 0.7$ ($F_- = 0.3$, $F_+ = 0$)
 - we test the nature of the tWb vertex
- Kinematic distributions for each helicity state are very different

Method	Sample	$\int Ldt \ (pb^{-1})$	F_0	Limit@95% CL
$\cos\! heta^*$	l+jets	162	$0.99^{+0.29}_{-0.35} \pm 0.19$	> 0.18
lepton p $_{T}$	combined	200	$0.31^{+0.37}_{-0.23} \pm 0.17$	< 0.95
Combined	-	-	$0.74^{+0.22}_{-0.34}$	-

background component

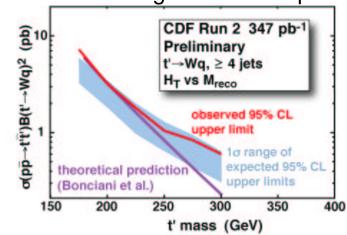
250

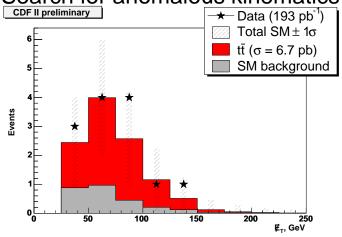

300

200

charged-lepton p_T (GeV)

10


W Helicity from Top Decay


Other Top Properties Measurements

Measurement	Result	$\int L dt$ (pb $^{-1}$)
W helicity F_0	$0.74^{+0.22}_{-0.34}$	200
W helicity F_+	$F_+ < 0.27 @ 95\% CL$	200
Search for anomalous kinematics	Consistent with SM	193
Search for H^+ in t decays	$BR(t \to Hb) < 0.91 @ 95\% CL$	193
$\sigma_{dilepton}/\sigma_{l+jets}$	1.45 $^{+0.83}_{-0.55}$ (stat + syst)	126
BR(t o Wb)/BR(t o Wq)	> 0.61 @ 95% CL	162
$BR(t o au u_ au q)/BR_{SM}(t o au u_ au q)$	< 5.2 @ 95% CL	193
Search for 4^{th} generation t' quark	$m_{t'} < 196, m_{t'} > 207 @ 95\% CL$	347
Top quark lifetime	$c au_{top} < 52.5 \; \mu m \; @ \; 95\% \; \text{CL}$	350

